Wythoff Nim Extensions and Splitting Sequences
نویسنده
چکیده
We study extensions of the classical impartial combinatorial game of Wythoff Nim. The games are played on two heaps of tokens, and have symmetric move options, so that, for any integers 0 ≤ x ≤ y, the outcome of the upper position (x, y) is identical to that of (y, x). First we prove that φ−1 = 2 1+ √ 5 is a lower bound for the lower asymptotic density of the x-coordinates of a given game’s upper P-positions. The second result concerns a subfamily, called a Generalized Diagonal Wythoff Nim, recently introduced by Larsson. A certain split of P-positions, distributed in a number of so-called Pbeams, was conjectured for many such games. The term split here means that an infinite sector of upper positions is void of P-positions, but with infinitely many upper P-positions above and below it. By using the first result, we prove this conjecture for one of these games, called (1, 2)-GDWN, where a player moves as in Wythoff Nim, or instead chooses to remove a positive number of tokens from one heap and twice that number from the other.
منابع مشابه
RESTRICTIONS OF m-WYTHOFF NIM AND p-COMPLEMENTARY BEATTY SEQUENCES
Fix a positive integerm. The game ofm-Wythoff Nim (A.S. Fraenkel, 1982) is a well-known extension of Wythoff Nim, a.k.a ’Corner the Queen’. Its set of P -positions may be represented by a pair of increasing sequences of non-negative integers. It is well-known that these sequences are so-called complementary homogeneous Beatty sequences, that is they satisfy Beatty’s theorem. For a positive inte...
متن کاملA Generalized Diagonal Wythoff Nim
The P-positions of the well-known 2-pile take-away game of Wythoff Nim lie on two ‘beams’ of slope √ 5+1 2 and √ 5−1 2 respectively. We study extensions to this game where a player may also remove simultaneously pt tokens from either of the piles and qt from the other, where p < q are given positive integers and where t ranges over the positive integers. We prove that for certain pairs (p, q) t...
متن کاملA Fibonacci Property of Wythoff Pairs
In this paper we point out another of those fascinating "coincidences" which are so characteristically associated with the Fibonacci numbers. It occurs in relation to the so-called safe pairs (an, bn) for Wythoffs Nim [1 , 2, 3 ] . These pairs have been extensively analyzed by Carlitz, Scoville and Hoggatt in their researches on Fibonacci representations [4, 5, 6, 7] , a context unrelated to th...
متن کاملA polynomial algorithm for a two parameter extension of Wythoff NIM based on the Perron-Frobenius theory
For any positive integer parameters a and b, the second author recently introduced a generalization mexb of the standard minimum excludant mex = mex1, along with a game NIM(a, b) that extends further Fraenkel’s NIM = NIM(a, 1), which in its turn is a generalization of the classical Wythoff NIM = NIM(1, 1). It was shown that P-positions (the kernel) of NIM(a, b) are given by the following typica...
متن کاملA Generalization of Wythoff's Game
Wythoff s game is a variation of Nim, a two-pile game in which each player removes counters in turn until the winner takes the last counter. The safe-pairs generated in the solution of Wythoff's game have many properties interesting in themselves, and are related to the canonical Zeckendorf representation of an integer using Fibonacci numbers. In Nim, the strategy is related to expressing the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014